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Universidad de Granada, E-18071, Spain

E-mail: falkowski@physics.rutgers.edu, mpv@ugr.es

Abstract: We compute one-loop corrections to the S and T parameters in the Unhiggs

scenario. In that scenario, the Standard Model Higgs is replaced by a non-local object,

called the Unhiggs, whose spectral function displays a continuum above the mass gap. The

Unhiggs propagator has effectively the same UV properties as the Standard Model Higgs

propagator, which implies that loop corrections to the electroweak precision observables are

finite and calculable. We show that the Unhiggs is consistent with electroweak precision

tests when its mass gap is at the weak scale; in fact, it then mimics a light SM Higgs boson.

We also argue that the Unhiggs, while being perfectly visible to electroweak precision

observables, is invisible to detection at LEP.

Keywords: Higgs Physics, Beyond Standard Model, Field Theories in Higher Dimensions

ArXiv ePrint: 0901.3777

c© SISSA 2009 doi:10.1088/1126-6708/2009/12/061

mailto:falkowski@physics.rutgers.edu
mailto:mpv@ugr.es
http://arxiv.org/abs/0901.3777
http://dx.doi.org/10.1088/1126-6708/2009/12/061


J
H
E
P
1
2
(
2
0
0
9
)
0
6
1

The Higgs boson is the last building block of the Standard Model (SM) that resists

experimental verification. Yet the whole theoretical and experimental consistency of the

SM hinges on that element. The vacuum expectation value (vev) of the Higgs field breaks

the electroweak symmetry, giving mass to the W and Z gauge bosons and the fermions.

The tree-level exchange of the Higgs particle contributes to the scattering amplitude of

longitudinally polarized electroweak gauge bosons in a way that makes the total amplitude

consistent with unitarity, provided the Higgs mass is not larger than 1TeV [1]. The minimal

Higgs sector with one Higgs doublet is automatically consistent with experimental data on

flavor changing neutral currents and CP violation. Finally, radiative corrections from the

Higgs boson affect the electroweak precision observables, notably the Peskin-Takeuchi S

and T parameters [2], and once again they are consistent with experiment, provided the

Higgs boson mass is smaller than 145 GeV (at 2σ confidence level [3]). Actually, the best fit

is achieved for the Higgs boson mass somewhat smaller than the 115 GeV lower limit from

LEP, which is probably the only source of tension within the minimal Higgs paradigm.

In spite of this phenomenological success, theoretical arguments and prejudices (the

hierarchy problem, in the first place) prompt searching for alternatives of the SM Higgs.

Surprisingly, finding a satisfactory alternative turns out to be highly non-trivial, and all

proposed examples so far face more or less severe problems. Either new contributions to

electroweak precision observables are unacceptably large (Higgsless), or one has to accept

fine-tuning at least at the one-percent level (MSSM, Little Higgs, pseudo-Goldstone Higgs),

or complicated ad-hoc theoretical structures have to be added. Moreover, extensions of the

SM typically face flavor and CP problems, and/or a host of model-specific problems. In

view of that, it is reasonable to ask if there exist unexplored theoretical directions that

could present new model-building opportunities.

Recently, ref. [4] proposed an interesting deformation of the SM Higgs. The general

idea is to replace an elementary Higgs field with a more complicated object described by

a non-local action. In the model of ref. [4], the kinetic term in momentum space is a non-

analytic function of the form (−p2 + µ2)2−d. The corresponding spectral density behaves

as ρ(s) ∼ sin(πd)sd−2 in the UV.1 This is the unparticle behavior [8], hence the name

unparticle Higgs, or Unhiggs in short. Much as the SM Higgs, the Unhiggs can develop a

vev that breaks electroweak symmetry.

The Unhiggs physics is determined by several continuous parameters. The exponent d

is called the conformal dimension, and varies between d = 1 (the ordinary particle limit)

and d = 2 (the upper limit in a ghost-free theory). The mass gap µ defines the momentum

scale where the tree-level propagator develops an imaginary part, which means that a

continuum of new degrees of freedom opens up at the scale µ. These new degrees of freedom

are thought of as excitations of an approximately conformal hidden sector charged under

the electroweak group.2 Finally, the Unhiggs is also characterized by the mass parameter

muh that, for momenta below the mass gap, plays a similar role as the SM Higgs mass.

1One could also represent the Unhiggs as a large or infinite number of densely spaced Higgs bosons,

each carrying a fraction of the total vev [5, 6]. See also [7] where the usual particle Higgs mixes with a SM

neutral unparticle continuum.
2See [9] for microscopic realizations of unparticles. The microscopic model for the Unhiggs (where the

unparticle sector takes part in electroweak symmetry breaking) has not been specified to date.
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The concept of the Unhiggs implies profound modifications of the SM interactions,

in particular, vertices with an arbitrary number of gauge bosons appear at the tree level.

Nevertheless, it was demonstrated [4] that the longitudinal gauge boson scattering remains

unitary, even though the analytical structure of the amplitude is completely different than

in the SM. Thus, the Unhiggs can take over one important task that in the SM is fulfilled

by the Higgs boson. In this paper we show that it can fulfill another task: it contributes to

electroweak precision observables in a way consistent with the electroweak precision tests.

In fact, we will show that the Unhiggs closely mimics the SM Higgs in a large portion of its

parameter space. While that statement is hardly surprising when the Unhiggs conformal

dimension is close to d = 1, or if the mass gap is much larger than the weak scale, it

remains true also for the dimension close to d = 2 and the mass gap smaller than 100 GeV.

In order to compute the electroweak precision observables, we will use the holographic

formulation of the Unhiggs developed in ref. [10]. A non-local action can be represented

as a boundary effective action of a local 5D gauge theory in a warped background. The

continuum of excitations can be achieved in the soft-wall set-up [11] where the IR brane is

sent away to infinity (in conformal coordinates) and the warp factor decays exponentially in

the IR. The underlying local formulation greatly simplifies the computation of amplitudes

involving the Unhiggs. In particular, gauge invariance is trivially realized, whereas it

is a nightmare in the original non-local formulation [12]. Furthermore, the holographic

formulation helps addressing some theoretical problems and consistency issues, e.g. fine-

tuning, or the necessity for a cut-off scale.

In the holographic approach, the Unhiggs is represented by a 5D bulk scalar field

H(x, z). The fifth dimension is warped with a warp factor that, in conformal coordinates,

decays exponentially in the IR: a(z) ∼ e−2µz/3 for µz ≫ 1 [13]. At small z, the 5th

dimension is truncated by the UV brane located at z = R (we assume µR ≪ 1), and the

scale Λ = 1/R sets the UV cut-off scale for the Unhiggs scenario. There is no IR brane,

and the fifth coordinate extends all the way to z = ∞. This set-up leads to a continuum of

bulk Higgs KK excitations with a mass gap set by the parameter µ in the exponent of a(z).

The Higgs field has a local potential in the bulk and/or on the UV brane, which triggers

its vev, 〈H〉 =

(

0

v̂(z)

)

/
√

2R. The vev breaks electroweak symmetry giving masses to the

SM W and Z bosons, where the electroweak scale is given by the integral of the bulk Higgs

vev: v2 = R−1
∫

a3v̂2. We define the 5D scalar field h describing the excitations in the

direction of the bulk vev: v̂(z) → v̂(z) + h(x, z). This 5D Higgs boson interacts with the

SM gauge bosons and fermions, and all their KK modes. The gauge interactions take place

in the bulk, since at least the SU(2)L × U(1)Y gauge bosons must propagate in the bulk.3

Once the Higgs field gets a vev, the 5D Higgs boson has a single vertex with two 5D W

bosons, and the coupling strength varies along the 5th dimension as g2
L∗a

3(z)v̂(z)/4. There

is also a similar coupling to two neutral fields (bulk Z bosons) with the coupling strength

(g2
L∗ + g2

Y ∗)a
3(z)v̂(z)/4. In this paper we assume that all SM fermions live on the UV

3If we want to preserve the custodial symmetry we need to extend U(1)Y to SU(2)R × U(1)X [14], but

this is not necessary for the sake of this paper. Furthermore, if the SM quarks propagate in the bulk then

also SU(3) color should live in the bulk.
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boundary at z = R so that their Yukawa interactions with the bulk Higgs are confined to

the UV boundary: δ(z − R)R1/2Yf∗Hf̄f .

Practical computations in 5D are most conveniently done using propagators defined

in the mixed 4D momentum space/5thD position space. These propagators describe the

amplitude to propagate the field carrying 4D momentum p from point z to z′ ≥ z. For the

Higgs boson field h, the mixed momentum/position propagator can be succinctly written as

P (p2, z, z′) =
K(z, p2)K(z′, p2)

Π(p2)
− R S(z, p2)K(z′, p2). (1)

Here we have introduced K(z, p2) as the solution to the bulk equation of motion that is

regular in the IR (that is to say, for Euclidean p2 = −p2
E < 0 it is damped as e−pEz

for z → ∞) and normalized to K(R) = 1. S(z, p2) is another independent solution that

satisfies S(R) = 0, S′(R) = 1. Π(p2) is the kinetic function defined by

Π(p2) = R−1K ′(R, p2) + ΠUV(p2), (2)

where ΠUV(p2) is an arbitrary local polynomial determined by the Higgs UV bound-

ary terms.

In a similar fashion one could write down the propagators for the gauge fields. In this

paper we investigate the set-up where all KK excitations of the gauge fields have a very

large mass gap, in which case all vector propagators collapse to zero-mode propagators,

e.g. PWW(p2, z, z′) → L−1/(p2 − m2
W ), L =

∫∞

R a(z). One should stress that this is not

a generic situation. Generically, one would expect the vector mass gap to be of the same

order of magnitude as that of the Unhiggs. However, the 5D framework allows the Unhiggs

and the vector mass gaps to be parametrically separated. One way to achieve this is via

fine tuning. For the warp factor behaving as a(z) ∼ e−2µz/3 in far IR the vector mass gap

is µ/3, while the Unhiggs mass gap is
√

µ2 + m2(∞) where m2(z) is the second derivative

of the bulk Higgs potential V (H(x, z)) at the minimum [10]. If m2(∞) is negative and

carefully fine tuned against µ2 we can make the Unhiggs mass gap much smaller than µ.

Another, perhaps more plausible way is to make the Higgs and the vector field to propagate

in different effective 5D metrics. This can happen, for example, if the gauge kinetic term

in the 5D lagrangian is multiplied by a dilaton field: −e−ΦFMNFMN , and the dilaton

acquires a z-dependent vev. If 〈Φ〉 grows as ρz in far IR, and ρ ≫ µ, then the vector

mass gap becomes much larger the Unhiggs one. Incidentally, if 〈Φ〉 grows faster than z

in IR then the vector spectrum has no continuum at all but just the standard discrete

KK spectrum. The bottom line is that the Unhiggs mass gap can be of the order of the

weak scale, while all vector excitations except for the zero modes decouple from low energy

physics. Similar comments apply to the charged and neutral physical scalars hosted by

the bulk Higgs field: naturally they would appear at the same scale as the Unhiggs, but

they can be parametrically decoupled. In this paper we restrict to such a simplified set-up

where the only new degrees of freedom at the weak scale are those belonging to the Unhiggs

continuum. This will allow us to zoom in on the peculiar properties of the Unhiggs physics.

We postpone the study of the more general case to a subsequent publication.

– 4 –
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a) b) c)

RR Rz zz’

Figure 1. Processes involving the Unhiggs exchange between a) two SM fermions, b) two SM

gauge bosons, c) between a SM fermion and a SM gauge boson.

The connection to the 4D non-local formulation of the Unhiggs proceeds via the bound-

ary effective action [15]. Once the SM fermions are localized on the UV brane, it is conve-

nient to identify the SM gauge fields with the boundary value of the 5D gauge fields. Thus,

the SU(2)L×U(1)Y gauge bosons are defined as L̄a
µ = L−1/2Lµ(x,R), B̄a

µ = L−1/2Bµ(x,R).

This definition ensures that the gauge fields couple to the SM fermion in a canonical way

(that is, there are no vertex corrections at tree level). The SM gauge couplings are identi-

fied as gL = gL∗(R/L)1/2, gY = gY ∗(R/L)1/2. Similarly, the Unhiggs field is the boundary

value of the 5D Higgs boson field: h̄ = h(x,R). The quadratic part of the effective action

for the Unhiggs field is the inverse of the UV-boundary-to-boundary propagator. From

eq. (1) it follows that

Seff =

∫

d4p

(2π)4
1

2
h̄(−p)Π(p2)h̄(p) + . . . . (3)

The kinetic function Π(s) in 5D warped models can have a non-trivial analytic structure in

the complex s plane. In the soft-wall scenario with the warp factor exponentially decaying

in the IR, Π(s) has a branch cut for s > µ2. The corresponding spectral function ρ(s) =

−π−1Im[1/Π(s + iǫ)] vanishes below µ2, up to a possible isolated pole whose presence

depends on the mass parameters in the theory, and it is positive and continuous above

µ2. Furthermore, the boundary effective action is conformal in the UV if the warp factor

is approximately that of AdS space in the vicinity of the UV brane. In that case, ρ(s)

displays the unparticle power-law behavior for R−2 ≫ s ≫ µ2. One could use the effective

action (3) to derive predictions for the Unhiggs physics, however the underlying 5D local

theory is far more convenient for practical computations.

After all these preliminary technicalities, computing Unhiggs amplitudes becomes

straightforward. Consider first a process that involves an Unhiggs exchange between two

SM fermions, figure 1a. Since the fermions are assumed to reside on the UV boundary,

both interaction vertices are on the boundary, so that the 5D Higgs boson has to propa-

gate from the UV boundary into the bulk and back. The relevant propagator is thus the

UV-boundary-to-boundary propagator, which is the inverse of the kinetic function Π(p2).

Note also that the Higgs-fermion vertex is proportional to the 5D Yukawa coupling which

is related to the fermion masses by Yf∗ =
√

2mf/v̂(R). Since v̂(R) 6= v in general, the cou-

pling strength is different than the SM one mf/v. It is convenient to include that coupling

strength rescaling in the definition of an effective propagator:

P
[ff ]
eff (p2) =

v̂(R)2

v2

1

Π(p2)
. (4)

– 5 –
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For example, the s-wave fermion scattering amplitude reads
m2

f

v2 P
[ff ]
eff (s), and differs from the

corresponding SM expression by replacing the Higgs propagator 1/(s −m2
h) with P

[ff ]
eff (s).

Next, consider a less trivial case where the Unhiggs propagates between two gauge

boson vertices, fig 1b. Now both vertices can be anywhere in the bulk, so that the amplitude

involves a double integral over the 5th dimension. Moreover, the coupling strength depends

on the position and varies as ∼ a3(z)v̂(z). Putting this all together, we define the effective

propagator relevant for this class of processes

P
[gg]
eff (p2) =

2
∫∞

R dz′
∫ z′

R dza3(z)v̂(z)a3(z′)v̂(z′)P (p2, z, z′)

Rv2
(5)

As in the previous case, the Unhiggs amplitudes are obtained by replacing with P
[gg]
eff

the Higgs propagator in the corresponding SM amplitude. For example, the Unhiggs

contribution to the scattering amplitude of isospin gauge boson states ab → cd (in the

limit gY → 0 for simplicity) is given by δabδcdM(s) + δacδbdM(t) + δadδbcM(u) where

M(s) = − g2

L

m2

W

[ǫ(k1) · ǫ(k2)][ǫ(k3) · ǫ(k4)]P
[gg]
eff (s) and ǫ(k) are the polarization vectors of

the gauge bosons. Furthermore, P
[gg]
eff is the relevant propagator to compute the Unhiggs

production via Higgstrahlung with a subsequent decay into WW, ZZ or γγ.

Finally, by the same logic one can define the effective propagator relevant for processes

with the Unhiggs propagating between SM fermions and gauge bosons:

P
[gf ]
eff (p2) =

∫∞

R a3(z)v̂(z)K(z, p2)

Rv̂(R)Π(p2)
. (6)

This propagator would be relevant, for example, for Unhiggs production via Higgstrahlung

with a subsequent decay into a pair of SM fermions.

So far our discussion has been completely general, provided the vector resonances

can be decoupled. In particular, it is valid for arbitrary 5D backgrounds that may or

may not describe approximately conformal unparticles. In the remainder of the paper, we

will concentrate on the specific background introduced in [10], which describes the Unhiggs

studied by Stancato and Terning [4]. The corresponding 5D background has the warp factor

a(z) = R
z e−2µ(z−R)/3, and the position dependent bulk Higgs mass term M̂2(z) = ν2−4

z2 − 3µ
z .

In this background, the bulk Higgs vev is given by [10]

v̂(z) = v0a
−3/2(z)

z1/2Kν(µz)

R1/2Kν(µR)
. (7)

This implies that the electroweak scale can be expressed as

v2 = Zuhv2
0 , Zuh =

1

2

[

K1+ν(µR)K1−ν(µR)

Kν(µR)2
− 1

]

. (8)

The Higgs equations of motion have the following two independent solutions [10]:

S(z, p2) = Ra−3/2(z)(z/R)1/2

·
[

Kν(
√

µ2 − p2R)Iν(
√

µ2 − p2z) − Iν(
√

µ2 − p2R)Kν(
√

µ2 − p2z)
]

,

K(z, p2) = a−3/2(z)(z/R)1/2 Kν(
√

µ2 − p2z)

Kν(
√

µ2 − p2R)
. (9)

– 6 –
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muh
2 Μ2 4 Μ2

s

ΡHsL

Ν=0.5 muh=50 GeV Μ=100 GeV L=32 TeV

Μ2 4 Μ2
s

ΡHsL

Ν=0.5 muh=150 GeV Μ=100 GeV L=32. TeV

Μ2 4 Μ2
s

ΡHsL

Ν=0.5 muh=250 GeV Μ=100 GeV L=32 TeV

Figure 2. Examples of the spectral function illustrating three basic types of behavior. In the

left panel, the Unhiggs mass parameter muh is much smaller than the mass gap µ, which results

in the continuum above s = µ2 being accompanied by an isolated delta function corresponding to

a particle with mass ∼ muh. As the ratio muh/µ is increased, the isolated pole approaches the

continuum and eventually merges into it (for ν > 0 the merging occurs for muh ∼ ν1/2µ). In the

middle panel, where muh
>
∼

µ, the pole has merged with the continuum but the spectral function is

peaked near s = µ2. In the right panel, where muh ≫ µ, there is no sharp features.

Plugging the last expression into the definition (2) of the kinetic function one obtains

Π(p2) = Π0(p
2) − Zuhm2

uh where

Π0(p
2) =

µK1−ν(µR)

RKν(µR)
−
√

µ2 − p2K1−ν(
√

µ2 − p2R)

RKν(
√

µ2 − p2R)
, (10)

and the Unhiggs mass parameter muh is a combination of the UV boundary mass and the

bulk parameters µ, ν,R [10]. Fine-tuning various contributions we can arrive at muh of the

order of the weak scale. The hierarchy problem is not addressed in this set-up.

For momenta well below the mass gap, |p2| ≪ µ2, the kinetic function reduces to the

normal particle kinetic function Π(p2) ≈ Zuh(p
2 − m2

uh). Quite intuitively, the non-local

character of the theory becomes manifest when p2 ∼ µ, that is when the bulk degrees of

freedom become kinematically available. For 0 < ν < 1 and |p2R2| ≪ 1 the kinetic function

is approximated by Π0(p
2) ∼ µ2ν − (µ2 − p2)ν , which is the kinetic function assumed by

Stancato and Terning after identifying d = 2 − ν. Note that the 5D model makes perfect

sense also for positive ν outside the open interval 0 < ν < 1. The case ν > 1 is in practice

indistinguishable from the particle limit d = 1 and is of little interest. The limit ν = 0 is

much more interesting since it defines a smooth continuation of the unparticle dimension

to d = 2.

The inverse of the UV brane position, Λ = 1/R, is the cut-off scale for the Unhiggs

scenario. Formally, the Unhiggs of ref. [4] is recovered in the limit Λ → ∞. Note, however,

that from the 5D point of view we cannot send Λ → ∞ without destroying perturbativity.

Indeed, the 5D top Yukawa coupling is given by Yt∗ =
√

2mt/v0 ≈ v/v0 = Z
1/2
uh . For 0 <

ν < 1 we find Zuh ∼ (µR)2ν−2 which yields Yt∗ ∼ (µR)ν−1. Perturbativity requires Yt∗
<
∼ 4π

which sets the upper limit on the cut-off scale Λ ∼ µ(4π)1/(1−ν) (in practice, this relation is

modified by a ν-dependent numerical factor of order few). In particular, for ν approaching

0 (the conformal dimension approaching 2), the cut-off is parametrically Λ ∼ 4πµ.

– 7 –
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Next, plugging the solutions (9) into our general formulas for the effective propagators

we obtain

P
[ff ]
eff (p2) =

Zuh

Π0(p2) − Zuhm2
uh + iZuhmhΓh(p2)

,

P
[gg]
eff (p2) =

1

p2
+

Π0(p
2)

p4

m2
uh − imhΓh(p2)

Π0(p2) − Zuhm2
uh + iZuhmhΓh(p2)

,

P
[gf ]
eff (p2) =

Π0(p
2)

p2

1

Π0(p2) − Zuhm
2
uh + iZuhmhΓh(p2)

. (11)

Above, we included the fermionic width which is relevant for production processes. The

fermionic width amounts to shifting Π(p2) → Π(p2) + iZuhmhΓh(p2) in the denominator

of the boundary part of the 5D propagator (1), where mhΓh(p2) ≈ 3
8π

m2

b

v2 p2 is the H → bb̄

decay width of the SM Higgs boson, and the factor Zuh accounts for the modified coupling

of the Unhiggs to the UV boundary fermions. In each case, for p2 ≪ µ2 we get Peff ≈
1/(p2 −m2

uh + imhΓh(p2)): far below the mass gap the effective propagators reduce to the

normal Higgs propagators, and muh can be identified with the Higgs mass. For large p2,

such that Π0(p
2) > Zuhm2

uh, the leading behavior of the gauge-gauge and the gauge-fermion

propagators is Peff ≈ 1/p2. This means that the amplitudes involving the electroweak

gauge bosons have the same UV properties as in the SM. This important observation

ensures perturbative unitarity of the longitudinal gauge boson scattering (and also fermion-

antifermion scattering into the longitudinal gauge bosons). The 1/p2 UV asymptotics

will also be essential to demonstrate that the loop corrections to electroweak precision

observables are finite. This UV behavior is not a property of the specific background we

have chosen, but may proven to hold more generally starting from eq. (5), as long as the vev

v̂(z) is smeared in the bulk (rather than a delta function localized on the UV boundary).

To gain more insight into the origin of this UV behavior one could “deconstruct” the

Unhiggs into a finite set of discrete Higgs bosons hi, in a similar vein as in [5], each Higgs

sharing a portion vi of the vev such that
∑

vi = v. In that approach it becomes clear that

only one Higgs h =
∑

vihi (who is in general a combination of many mass eigenstates),

is exchanged between gauge boson vertices. This explains the 1/p2 asymptotics, since at

high energies the mass mixing becomes irrelevant. What we have shown here is that this

property persists in the limit where the Higgs particles form a continuum.

Note also that, for muh → 0, P
[gg]
eff and P

[gf ]
eff are equal to 1/p2 (ignoring the width),

because in this limit the “KK modes” of the bulk Higgs are orthogonal to the zero modes

of W and Z gauge bosons. In the opposite limit, muh → ∞, the fermion-fermion and

the gauge-fermion propagators vanish. That is because this limit implies taking the brane

Higgs mass to infinity, which pushes the bulk Higgs away from the UV brane where the

fermions live.

We are ready to address the central question of this paper: what is the impact of the

Unhiggs on electroweak precision observables? Much as in the SM, we need to compute

the vacuum polarization diagrams of zero modes of the electroweak gauge bosons. As we

explained, computing amplitudes with the Unhiggs in the intermediate state boils down

to replacing the Higgs propagator in the corresponding SM amplitude with the relevant

– 8 –
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Figure 3. The 5D diagram relevant for the Unhiggs contribution to S and T.

effective Unhiggs propagator. In the case at hand we need the gauge-gauge effective prop-

agator P
[gg]
eff defined in eq. (5). This leads to the following expressions for the Unhiggs

contributions to the S and T parameters:

Tuh = − 3

8π cos2 θW

∫

dk
k5

(k2 + m2
W )(k2 + m2

Z)
P

[gg]
eff (−k2),

Suh =
1

6π

∫

dkk3 k4 + 3k2m2
Z + 12m4

Z

(k2 + m2
Z)3

P
[gg]
eff (−k2). (12)

In the SM, the Higgs contribution is logarithmically divergent, TSM(mh) ≈
3

8π cos2 θW
log(Λ/mh), SSM(mh) ≈ − 1

6π log(Λ/mh). That divergence is canceled by the

loops involving the electroweak gauge bosons only. Rather than displaying the full re-

sult, it is more convenient to define the shift of S and T with respect to some reference

Higgs mass. Such quantities are finite in the SM: (∆T )SM ≈ − 3
8π cos2 θW

log(mh/mref),

(∆S)SM ≈ 1
6π log(mh/mref). For the Unhiggs, the fact that the UV behavior of the effective

propagator is the same as in the SM implies that the cancellation of divergences works the

same way as in the SM. Thus, we can define the shift of S and T as

∆T = Tuh − TSM(mref), ∆S = Suh − SSM(mref), (13)

and we are guaranteed that these shifts are finite in the entire parameter space of the

Unhiggs. In the following we fix mref = 100GeV.

For a given set of muh, µ, ν,R we can easily evaluate ∆S and ∆T numerically. Our

results for sample slices of the Unhiggs parameter space are presented in figures 4, 5 and

compared to the SM results. These numerical results lead us to the following conclusions:

• The Unhiggs is consistent with the LEP constraints on S and T in a large portion of

its parameter space. In particular, electroweak precision observables do not exclude

the conformal dimension d = 2 (ν = 0), nor a mass gap smaller than 100GeV.

• Typically, the Unhiggs mimics the SM Higgs, in the sense that its contributions to

∆S and ∆T are similar to the SM Higgs contribution for some Higgs mass.

• If the Unhiggs mass parameter muh is much smaller than the mass gap µ, then

the Unhiggs mimics the SM Higgs with mass mh ∼ muh. If, on the other hand,

muh ≫ µ and d is away from 1 (the particle limit), the Unhiggs mimics the SM Higgs

with mass mh ∼ µ. The latter can be partly understood from the behavior of the

spectral function ρ(s), which has a large support near s = µ2, independently of the

value of muh.
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Figure 4. The trajectories in the ∆S − ∆T plane for constant Unhiggs parameters ν, µ, R and

varying muh. For a given µ and ν, the UV scale Λ = 1/R is set to the maximum value allowed

by perturbativity (or to the Planck scale, if the former is larger). Different points correspond to

varying the Unhiggs mass muh in the range [50, 1000] GeV (red circles, from left to right, in steps

of hundred except for the first step). For reference, in each case we plotted the trajectory in the

SM when mh is varied in the range [50, 1000] GeV (solid black).
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Figure 5. The trajectories in the ∆S−∆T plane for constant Unhiggs parameters muh, µ, R and

varying ν in the range [0, 1] (red circles, from left to right, in step of 0.2). For reference, we plotted

the trajectory in the SM when mh is varied in the range [50, 200] GeV (solid black).

We conclude that the electroweak precision observables are consistent with the Unhiggs

with a mass gap of order 100 GeV, irrespectively of whether there is an isolated pole below

the continuum or not.

What about the direct searches at LEP? When the Unhiggs spectral function has a

pole well below the continuum (as is the case when muh
<
∼ µ), that pole behaves much like

the SM Higgs and the 115 GeV lower limit from LEP does apply. That is because in that

case the effective Unhiggs propagators reduce to the SM Higgs propagator for p2 ≪ µ2

(including p2 ∼ m2
uh, where the resonance is located). If, on the other hand, there is no

isolated pole, then the physical properties of the Unhiggs are vastly different and the LEP

limits have to be reconsidered.
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Figure 6. The ratio of the total Unhiggs production cross section to the SM Higgs cross section for

mh = 100GeV as a function of LEP center-of-mass energy. In the left panel the mass parameters

are chosen such that the Unhiggs propagator has an isolated pole at 100GeV, while the continuum

starts at 110GeV. In the middle and right panels there is no pole below the continuum. For the

choice of parameters in the middle panel the spectral function is sharply peaked near s = µ2,

whereas in the right panel the spectral function is smeared out and has no peak.
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Figure 7. The normalized cross section for Higgs production via Higgstralung with subsequent

decay into bb̄ in the SM (left) as a function of the Higgs center-of-mass energy E, compared with

two examples of the corresponding Unhiggs production cross-section. In the middle panel the

parameters are such that the spectral density is peaked near s = µ2, which results in the cross-

section being peaked near E = µ. In the right panel, the spectral density is monotonically growing

and the cross section is more smeared out. In both cases, the peak production cross section is

dramatically suppressed with respect to the SM one.

In the SM, the cross section for the Higgs production in the Higgsstrahlung process is

proportional to

σSM(E) ∼
∫

dĒfσ(E − Ē)
mhΓh(Ē2)

(Ē2 − m2
h)2 + m2

hΓh(Ē2)2
. (14)

Here, fσ is a Gaussian distribution of width σ, which naively accounts for experimental

uncertainties (we take σ = 10 GeV). Next, E is the center-of-mass energy of the emitted

Higgs boson, and Γh is the Higgs width. We focus here on the energies accesible at LEP,

E ∼ 100GeV, in which case the latter is in practice the width of the H → bb̄ decay. For the

sake of reference, in figure 7 we plotted the distribution (14) normalized by σmax
SM = σSM(m2

h)

for mh = 100GeV. The width of this distribution is set by the experimental uncertainties

that we parametrize by σ.

In the Unhiggs scenario, all the elements that enter the SM cross section are affected:

the propagator, the width, the vertex with the Z boson, the vertex with the final states.
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However, the modification of the vertices is already taken into account in our definition of

the effective Unhiggs propagators. Thus, at the end of the day, switching from the SM Higgs

to the Unhiggs boils down to replacing the Higgs propagator with the effective Unhiggs

propagator. The total Unhiggs production cross section can be calculated by replacing the

phase space of one Higgs particle δ(p2−m2
h) with the unparticle phase space element [4, 8],

which in our language is given by −π−1ImP
[gg]
eff . The sample results are plotted in figure 6.

Suppression of the production of the Unhiggs continuum depends on the parameter space.

When the spectral function has a pole below the continuum at s ∼ m2
0 then the presence of

the continuum has little impact, and the production cross section ends up being similar to

the SM Higgs production cross section for mh ∼ m0. When there is no pole but the spectral

function is peaked near the mass gap at s = µ2 then the production of the continuum is

suppressed by a factor of 2− 3 compared to the SM Higgs with mh ∼ µ. Smearing out the

spectral function leads to further suppression. One difference with respect to the results

of [4] is that we cannot switch off the production cross section by going to the limit d → 2.

In our case, the corresponding limit ν → 0 is perfectly regular, and the total production

cross section only slightly differs from the ν = .5 case plotted in figure 6.

One can also ask the question about the visible cross section, that is about the Unhiggs

production followed by the decay into asymptotic SM states. For energies in the LEP range

only the SM fermions are kinematically available. Therefore the Unhiggs propagation

between the Z-boson vertex and the final states is described by the gauge-fermion effective

propagator. Taking into account the Gaussian smearing (as in the SM case, eq. (14)), the

visible cross section is proportional to

σ
[gf ]
eff (E) ∼

∫

dĒfσ(E − Ē)mhΓh(Ē2)|P [gf ]
eff (Ē2)|2. (15)

This distribution sets the upper limit for the Unhiggs production followed by its decay

within the detector. In figure 7, we plot this distribution for two sample points in the

Unhiggs parameter space for which there is no isolated pole below the continuum. It is

clear that the visible Unhiggs cross-section is suppressed by several orders of magnitude

with respect to one for the SM Higgs with mh ∼ µ. This makes the Unhiggs continuum

invisible to LEP for all practical purpose. The relative suppression is the result of a non-

resonant behavior due to the “classical width” — the large imaginary part of Π0(p
2) for

p2 > µ2, which completely drowns the small quantum width of order mhΓh. Unlike in the

case of the SM Higgs, the amplitude for the Unhiggs production-plus-decay process does

not pick up a strong enhancement factor from the on-shell propagator.

In summary, we have computed corrections to the S and T parameters from the Unhiggs

loops. The conclusion is that the electroweak precision observables are consistent with the

Unhiggs scenario, even when the Unhiggs conformal dimension largely deviates d = 1, or

when the Unhiggs mass gap is of order the weak scale. In fact, when it comes to electroweak

precision observables, the Unhiggs mimics a light SM Higgs boson in a large portion of its

parameter space. In our earlier paper [10] we also showed that the Unhiggs perfectly mimics

the SM Higgs in its role of unitarizing longitudinal gauge boson scattering. The two above

facts combined make the Unhiggs a theorerically consistent and phenomenologically viable
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alternative to the SM Higgs. At the same time, from the point of view of collider physics the

Unhiggs is definitely distinct. The invisible and visible Unhiggs production cross section

can be suppressed relative to the SM Higgs one. This, together with the absence of resonant

peaks, makes the Unhiggs continuum more elusive to collider searches, in the similar spirit

as in the uniform Higgs [5] or in the stealthy Higgs [16] models. A more careful analysis of

the LEP constraints is necessary in order to determine the allowed parameter space of the

Unhiggs scenario.
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